The Gentle Singularity

We are past the event horizon; the takeoff has started. Humanity is close to building digital superintelligence, and at least so far it’s much less weird than it seems like it should be.

Robots are not yet walking the streets, nor are most of us talking to AI all day. People still die of disease, we still can’t easily go to space, and there is a lot about the universe we don’t understand.

And yet, we have recently built systems that are smarter than people in many ways, and are able to significantly amplify the output of people using them. The least-likely part of the work is behind us; the scientific insights that got us to systems like GPT-4 and o3 were hard-won, but will take us very far.

AI will contribute to the world in many ways, but the gains to quality of life from AI driving faster scientific progress and increased productivity will be enormous; the future can be vastly better than the present. Scientific progress is the biggest driver of overall progress; it’s hugely exciting to think about how much more we could have.

In some big sense, ChatGPT is already more powerful than any human who has ever lived. Hundreds of millions of people rely on it every day and for increasingly important tasks; a small new capability can create a hugely positive impact; a small misalignment multiplied by hundreds of millions of people can cause a great deal of negative impact.

2025 has seen the arrival of agents that can do real cognitive work; writing computer code will never be the same. 2026 will likely see the arrival of systems that can figure out novel insights. 2027 may see the arrival of robots that can do tasks in the real world.

A lot more people will be able to create software, and art. But the world wants a lot more of both, and experts will probably still be much better than novices, as long as they embrace the new tools. Generally speaking, the ability for one person to get much more done in 2030 than they could in 2020 will be a striking change, and one many people will figure out how to benefit from.

In the most important ways, the 2030s may not be wildly different. People will still love their families, express their creativity, play games, and swim in lakes.

But in still-very-important-ways, the 2030s are likely going to be wildly different from any time that has come before. We do not know how far beyond human-level intelligence we can go, but we are about to find out.

In the 2030s, intelligence and energy—ideas, and the ability to make ideas happen—are going to become wildly abundant. These two have been the fundamental limiters on human progress for a long time; with abundant intelligence and energy (and good governance), we can theoretically have anything else.

Already we live with incredible digital intelligence, and after some initial shock, most of us are pretty used to it. Very quickly we go from being amazed that AI can generate a beautifully-written paragraph to wondering when it can generate a beautifully-written novel; or from being amazed that it can make live-saving medical diagnoses to wondering when it can develop the cures; or from being amazed it can create a small computer program to wondering when it can create an entire new company. This is how the singularity goes: wonders become routine, and then table stakes.

We already hear from scientists that they are two or three times more productive than they were before AI. Advanced AI is interesting for many reasons, but perhaps nothing is quite as significant as the fact that we can use it to do faster AI research. We may be able to discover new computing substrates, better algorithms, and who knows what else. If we can do a decade’s worth of research in a year, or a month, then the rate of progress will obviously be quite different.

From here on, the tools we have already built will help us find further scientific insights and aid us in creating better AI systems. Of course this isn’t the same thing as an AI system completely autonomously updating its own code, but nevertheless this is a larval version of recursive self-improvement.

There are other self-reinforcing loops at play. The economic value creation has started a flywheel of compounding infrastructure buildout to run these increasingly-powerful AI systems. And robots that can build other robots (and in some sense, datacenters that can build other datacenters) aren’t that far off. 

If we have to make the first million humanoid robots the old-fashioned way, but then they can operate the entire supply chain—digging and refining minerals, driving trucks, running factories, etc.—to build more robots, which can build more chip fabrication facilities, data centers, etc, then the rate of progress will obviously be quite different.

As datacenter production gets automated, the cost of intelligence should eventually converge to near the cost of electricity. (People are often curious about how much energy a ChatGPT query uses; the average query uses about 0.34 watt-hours, about what an oven would use in a little over one second, or a high-efficiency lightbulb would use in a couple of minutes. It also uses about 0.000085 gallons of water; roughly one fifteenth of a teaspoon.)

The rate of technological progress will keep accelerating, and it will continue to be the case that people are capable of adapting to almost anything. There will be very hard parts like whole classes of jobs going away, but on the other hand the world will be getting so much richer so quickly that we’ll be able to seriously entertain new policy ideas we never could before. We probably won’t adopt a new social contract all at once, but when we look back in a few decades, the gradual changes will have amounted to something big.

If history is any guide, we will figure out new things to do and new things to want, and assimilate new tools quickly (job change after the industrial revolution is a good recent example). Expectations will go up, but capabilities will go up equally quickly, and we’ll all get better stuff. We will build ever-more-wonderful things for each other. People have a long-term important and curious advantage over AI: we are hard-wired to care about other people and what they think and do, and we don’t care very much about machines.

A subsistence farmer from a thousand years ago would look at what many of us do and say we have fake jobs, and think that we are just playing games to entertain ourselves since we have plenty of food and unimaginable luxuries. I hope we will look at the jobs a thousand years in the future and think they are very fake jobs, and I have no doubt they will feel incredibly important and satisfying to the people doing them.

The rate of new wonders being achieved will be immense. It’s hard to even imagine today what we will have discovered by 2035; maybe we will go from solving high-energy physics one year to beginning space colonization the next year; or from a major materials science breakthrough one year to true high-bandwidth brain-computer interfaces the next year. Many people will choose to live their lives in much the same way, but at least some people will probably decide to “plug in”.

Looking forward, this sounds hard to wrap our heads around. But probably living through it will feel impressive but manageable. From a relativistic perspective, the singularity happens bit by bit, and the merge happens slowly. We are climbing the long arc of exponential technological progress; it always looks vertical looking forward and flat going backwards, but it’s one smooth curve. (Think back to 2020, and what it would have sounded like to have something close to AGI by 2025, versus what the last 5 years have actually been like.)

There are serious challenges to confront along with the huge upsides. We do need to solve the safety issues, technically and societally, but then it’s critically important to widely distribute access to superintelligence given the economic implications. The best path forward might be something like:

  1. Solve the alignment problem, meaning that we can robustly guarantee that we get AI systems to learn and act towards what we collectively really want over the long-term (social media feeds are an example of misaligned AI; the algorithms that power those are incredible at getting you to keep scrolling and clearly understand your short-term preferences, but they do so by exploiting something in your brain that overrides your long-term preference).

  2. Then focus on making superintelligence cheap, widely available, and not too concentrated with any person, company, or country. Society is resilient, creative, and adapts quickly. If we can harness the collective will and wisdom of people, then although we’ll make plenty of mistakes and some things will go really wrong, we will learn and adapt quickly and be able to use this technology to get maximum upside and minimal downside. Giving users a lot of freedom, within broad bounds society has to decide on, seems very important. The sooner the world can start a conversation about what these broad bounds are and how we define collective alignment, the better.

We (the whole industry, not just OpenAI) are building a brain for the world. It will be extremely personalized and easy for everyone to use; we will be limited by good ideas. For a long time, technical people in the startup industry have made fun of “the idea guys”; people who had an idea and were looking for a team to build it. It now looks to me like they are about to have their day in the sun.

OpenAI is a lot of things now, but before anything else, we are a superintelligence research company. We have a lot of work in front of us, but most of the path in front of us is now lit, and the dark areas are receding fast. We feel extraordinarily grateful to get to do what we do.

Intelligence too cheap to meter is well within grasp. This may sound crazy to say, but if we told you back in 2020 we were going to be where we are today, it probably sounded more crazy than our current predictions about 2030.

May we scale smoothly, exponentially and uneventfully through superintelligence.

Three Observations

Our mission is to ensure that AGI (Artificial General Intelligence) benefits all of humanity. 

Systems that start to point to AGI* are coming into view, and so we think it’s important to understand the moment we are in. AGI is a weakly defined term, but generally speaking we mean it to be a system that can tackle increasingly complex problems, at human level, in many fields.

People are tool-builders with an inherent drive to understand and create, which leads to the world getting better for all of us. Each new generation builds upon the discoveries of the generations before to create even more capable tools—electricity, the transistor, the computer, the internet, and soon AGI.

Over time, in fits and starts, the steady march of human innovation has brought previously unimaginable levels of prosperity and improvements to almost every aspect of people’s lives.

In some sense, AGI is just another tool in this ever-taller scaffolding of human progress we are building together. In another sense, it is the beginning of something for which it’s hard not to say “this time it’s different”; the economic growth in front of us looks astonishing, and we can now imagine a world where we cure all diseases, have much more time to enjoy with our families, and can fully realize our creative potential.

In a decade, perhaps everyone on earth will be capable of accomplishing more than the most impactful person can today.

We continue to see rapid progress with AI development. Here are three observations about the economics of AI:

1. The intelligence of an AI model roughly equals the log of the resources used to train and run it. These resources are chiefly training compute, data, and inference compute. It appears that you can spend arbitrary amounts of money and get continuous and predictable gains; the scaling laws that predict this are accurate over many orders of magnitude.

2. The cost to use a given level of AI falls about 10x every 12 months, and lower prices lead to much more use. You can see this in the token cost from GPT-4 in early 2023 to GPT-4o in mid-2024, where the price per token dropped about 150x in that time period. Moore’s law changed the world at 2x every 18 months; this is unbelievably stronger. 

3. The socioeconomic value of linearly increasing intelligence is super-exponential in nature. A consequence of this is that we see no reason for exponentially increasing investment to stop in the near future.

If these three observations continue to hold true, the impacts on society will be significant.

We are now starting to roll out AI agents, which will eventually feel like virtual co-workers.

Let’s imagine the case of a software engineering agent, which is an agent that we expect to be particularly important. Imagine that this agent will eventually be capable of doing most things a software engineer at a top company with a few years of experience could do, for tasks up to a couple of days long. It will not have the biggest new ideas, it will require lots of human supervision and direction, and it will be great at some things but surprisingly bad at others.

Still, imagine it as a real-but-relatively-junior virtual coworker. Now imagine 1,000 of them. Or 1 million of them. Now imagine such agents in every field of knowledge work.

In some ways, AI may turn out to be like the transistor economically—a big scientific discovery that scales well and that seeps into almost every corner of the economy. We don’t think much about transistors, or transistor companies, and the gains are very widely distributed. But we do expect our computers, TVs, cars, toys, and more to perform miracles.

The world will not change all at once; it never does. Life will go on mostly the same in the short run, and people in 2025 will mostly spend their time in the same way they did in 2024. We will still fall in love, create families, get in fights online, hike in nature, etc.

But the future will be coming at us in a way that is impossible to ignore, and the long-term changes to our society and economy will be huge. We will find new things to do, new ways to be useful to each other, and new ways to compete, but they may not look very much like the jobs of today. 

Agency, willfulness, and determination will likely be extremely valuable. Correctly deciding what to do and figuring out how to navigate an ever-changing world will have huge value; resilience and adaptability will be helpful skills to cultivate. AGI will be the biggest lever ever on human willfulness, and enable individual people to have more impact than ever before, not less.

We expect the impact of AGI to be uneven. Although some industries will change very little, scientific progress will likely be much faster than it is today; this impact of AGI may surpass everything else.

The price of many goods will eventually fall dramatically (right now, the cost of intelligence and the cost of energy constrain a lot of things), and the price of luxury goods and a few inherently limited resources like land may rise even more dramatically.

Technically speaking, the road in front of us looks fairly clear. But public policy and collective opinion on how we should integrate AGI into society matter a lot; one of our reasons for launching products early and often is to give society and the technology time to co-evolve.

AI will seep into all areas of the economy and society; we will expect everything to be smart. Many of us expect to need to give people more control over the technology than we have historically, including open-sourcing more, and accept that there is a balance between safety and individual empowerment that will require trade-offs.

While we never want to be reckless and there will likely be some major decisions and limitations related to AGI safety that will be unpopular, directionally, as we get closer to achieving AGI, we believe that trending more towards individual empowerment is important; the other likely path we can see is AI being used by authoritarian governments to control their population through mass surveillance and loss of autonomy.

Ensuring that the benefits of AGI are broadly distributed is critical. The historical impact of technological progress suggests that most of the metrics we care about (health outcomes, economic prosperity, etc.) get better on average and over the long-term, but increasing equality does not seem technologically determined and getting this right may require new ideas.

In particular, it does seem like the balance of power between capital and labor could easily get messed up, and this may require early intervention. We are open to strange-sounding ideas like giving some “compute budget” to enable everyone on Earth to use a lot of AI, but we can also see a lot of ways where just relentlessly driving the cost of intelligence as low as possible has the desired effect.

Anyone in 2035 should be able to marshall the intellectual capacity equivalent to everyone in 2025; everyone should have access to unlimited genius to direct however they can imagine. There is a great deal of talent right now without the resources to fully express itself, and if we change that, the resulting creative output of the world will lead to tremendous benefits for us all.






Thanks especially to Josh Achiam, Boaz Barak and Aleksander Madry for reviewing drafts of this.

*By using the term AGI here, we aim to communicate clearly, and we do not intend to alter or interpret the definitions and processes that define our relationship with Microsoft. We fully expect to be partnered with Microsoft for the long term. This footnote seems silly, but on the other hand we know some journalists will try to get clicks by writing something silly so here we are pre-empting the silliness…

Reflections

The second birthday of ChatGPT was only a little over a month ago, and now we have transitioned into the next paradigm of models that can do complex reasoning. New years get people in a reflective mood, and I wanted to share some personal thoughts about how it has gone so far, and some of the things I’ve learned along the way.

As we get closer to AGI, it feels like an important time to look at the progress of our company. There is still so much to understand, still so much we don’t know, and it’s still so early. But we know a lot more than we did when we started.

We started OpenAI almost nine years ago because we believed that AGI was possible, and that it could be the most impactful technology in human history. We wanted to figure out how to build it and make it broadly beneficial; we were excited to try to make our mark on history. Our ambitions were extraordinarily high and so was our belief that the work might benefit society in an equally extraordinary way.

At the time, very few people cared, and if they did, it was mostly because they thought we had no chance of success.

In 2022, OpenAI was a quiet research lab working on something temporarily called “Chat With GPT-3.5”. (We are much better at research than we are at naming things.) We had been watching people use the playground feature of our API and knew that developers were really enjoying talking to the model. We thought building a demo around that experience would show people something important about the future and help us make our models better and safer.

We ended up mercifully calling it ChatGPT instead, and launched it on November 30th of 2022.

We always knew, abstractly, that at some point we would hit a tipping point and the AI revolution would get kicked off. But we didn’t know what the moment would be. To our surprise, it turned out to be this.

The launch of ChatGPT kicked off a growth curve like nothing we have ever seen—in our company, our industry, and the world broadly. We are finally seeing some of the massive upside we have always hoped for from AI, and we can see how much more will come soon.


It hasn’t been easy. The road hasn’t been smooth and the right choices haven’t been obvious.

In the last two years, we had to build an entire company, almost from scratch, around this new technology. There is no way to train people for this except by doing it, and when the technology category is completely new, there is no one at all who can tell you exactly how it should be done.

Building up a company at such high velocity with so little training is a messy process. It’s often two steps forward, one step back (and sometimes, one step forward and two steps back). Mistakes get corrected as you go along, but there aren’t really any handbooks or guideposts when you’re doing original work. Moving at speed in uncharted waters is an incredible experience, but it is also immensely stressful for all the players. Conflicts and misunderstanding abound.

These years have been the most rewarding, fun, best, interesting, exhausting, stressful, and—particularly for the last two—unpleasant years of my life so far. The overwhelming feeling is gratitude; I know that someday I’ll be retired at our ranch watching the plants grow, a little bored, and will think back at how cool it was that I got to do the work I dreamed of since I was a little kid. I try to remember that on any given Friday, when seven things go badly wrong by 1 pm.


A little over a year ago, on one particular Friday, the main thing that had gone wrong that day was that I got fired by surprise on a video call, and then right after we hung up the board published a blog post about it. I was in a hotel room in Las Vegas. It felt, to a degree that is almost impossible to explain, like a dream gone wrong.

Getting fired in public with no warning kicked off a really crazy few hours, and a pretty crazy few days. The “fog of war” was the strangest part. None of us were able to get satisfactory answers about what had happened, or why. 

The whole event was, in my opinion, a big failure of governance by well-meaning people, myself included. Looking back, I certainly wish I had done things differently, and I’d like to believe I’m a better, more thoughtful leader today than I was a year ago.

I also learned the importance of a board with diverse viewpoints and broad experience in managing a complex set of challenges. Good governance requires a lot of trust and credibility. I appreciate the way so many people worked together to build a stronger system of governance for OpenAI that enables us to pursue our mission of ensuring that AGI benefits all of humanity.

My biggest takeaway is how much I have to be thankful for and how many people I owe gratitude towards: to everyone who works at OpenAI and has chosen to spend their time and effort going after this dream, to friends who helped us get through the crisis moments, to our partners and customers who supported us and entrusted us to enable their success, and to the people in my life who showed me how much they cared. [1]

We all got back to the work in a more cohesive and positive way and I’m very proud of our focus since then. We have done what is easily some of our best research ever. We grew from about 100 million weekly active users to more than 300 million. Most of all, we have continued to put technology out into the world that people genuinely seem to love and that solves real problems.


Nine years ago, we really had no idea what we were eventually going to become; even now, we only sort of know. AI development has taken many twists and turns and we expect more in the future.

Some of the twists have been joyful; some have been hard. It’s been fun watching a steady stream of research miracles occur, and a lot of naysayers have become true believers. We’ve also seen some colleagues split off and become competitors. Teams tend to turn over as they scale, and OpenAI scales really fast. I think some of this is unavoidable—startups usually see a lot of turnover at each new major level of scale, and at OpenAI numbers go up by orders of magnitude every few months. The last two years have been like a decade at a normal company. When any company grows and evolves so fast, interests naturally diverge. And when any company in an important industry is in the lead, lots of people attack it for all sorts of reasons, especially when they are trying to compete with it.

Our vision won’t change; our tactics will continue to evolve. For example, when we started we had no idea we would have to build a product company; we thought we were just going to do great research. We also had no idea we would need such a crazy amount of capital. There are new things we have to go build now that we didn’t understand a few years ago, and there will be new things in the future we can barely imagine now. 

We are proud of our track-record on research and deployment so far, and are committed to continuing to advance our thinking on safety and benefits sharing. We continue to believe that the best way to make an AI system safe is by iteratively and gradually releasing it into the world, giving society time to adapt and co-evolve with the technology, learning from experience, and continuing to make the technology safer. We believe in the importance of being world leaders on safety and alignment research, and in guiding that research with feedback from real world applications.

We are now confident we know how to build AGI as we have traditionally understood it. We believe that, in 2025, we may see the first AI agents “join the workforce” and materially change the output of companies. We continue to believe that iteratively putting great tools in the hands of people leads to great, broadly-distributed outcomes.

We are beginning to turn our aim beyond that, to superintelligence in the true sense of the word. We love our current products, but we are here for the glorious future. With superintelligence, we can do anything else. Superintelligent tools could massively accelerate scientific discovery and innovation well beyond what we are capable of doing on our own, and in turn massively increase abundance and prosperity.

This sounds like science fiction right now, and somewhat crazy to even talk about it. That’s alright—we’ve been there before and we’re OK with being there again. We’re pretty confident that in the next few years, everyone will see what we see, and that the need to act with great care, while still maximizing broad benefit and empowerment, is so important. Given the possibilities of our work, OpenAI cannot be a normal company.

How lucky and humbling it is to be able to play a role in this work.

(Thanks to Josh Tyrangiel for sort of prompting this. I wish we had had a lot more time.)




[1]

There were a lot of people who did incredible and gigantic amounts of work to help OpenAI, and me personally, during those few days, but two people stood out from all others.

Ron Conway and Brian Chesky went so far above and beyond the call of duty that I’m not even sure how to describe it. I’ve of course heard stories about Ron’s ability and tenaciousness for years and I’ve spent a lot of time with Brian over the past couple of years getting a huge amount of help and advice.

But there’s nothing quite like being in the foxhole with people to see what they can really do. I am reasonably confident OpenAI would have fallen apart without their help; they worked around the clock for days until things were done.

Although they worked unbelievably hard, they stayed calm and had clear strategic thought and great advice throughout. They stopped me from making several mistakes and made none themselves. They used their vast networks for everything needed and were able to navigate many complex situations. And I’m sure they did a lot of things I don’t know about.

What I will remember most, though, is their care, compassion, and support.

I thought I knew what it looked like to support a founder and a company, and in some small sense I did. But I have never before seen, or even heard of, anything like what these guys did, and now I get more fully why they have the legendary status they do. They are different and both fully deserve their genuinely unique reputations, but they are similar in their remarkable ability to move mountains and help, and in their unwavering commitment in times of need. The tech industry is far better off for having both of them in it.

There are others like them; it is an amazingly special thing about our industry and does much more to make it all work than people realize. I look forward to paying it forward.

On a more personal note, thanks especially to Ollie for his support that weekend and always; he is incredible in every way and no one could ask for a better partner.

GPT-4o

There are two things from our announcement today I wanted to highlight.

First, a key part of our mission is to put very capable AI tools in the hands of people for free (or at a great price). I am very proud that we’ve made the best model in the world available for free in ChatGPT, without ads or anything like that. 

Our initial conception when we started OpenAI was that we’d create AI and use it to create all sorts of benefits for the world. Instead, it now looks like we’ll create AI and then other people will use it to create all sorts of amazing things that we all benefit from. 

We are a business and will find plenty of things to charge for, and that will help us provide free, outstanding AI service to (hopefully) billions of people. 

Second, the new voice (and video) mode is the best computer interface I’ve ever used. It feels like AI from the movies; and it’s still a bit surprising to me that it’s real. Getting to human-level response times and expressiveness turns out to be a big change.

The original ChatGPT showed a hint of what was possible with language interfaces; this new thing feels viscerally different. It is fast, smart, fun, natural, and helpful.

Talking to a computer has never felt really natural for me; now it does. As we add (optional) personalization, access to your information, the ability to take actions on your behalf, and more, I can really see an exciting future where we are able to use computers to do much more than ever before.

Finally, huge thanks to the team that poured so much work into making this happen!

What I Wish Someone Had Told Me

  1. Optimism, obsession, self-belief, raw horsepower and personal connections are how things get started.
  2. Cohesive teams, the right combination of calmness and urgency, and unreasonable commitment are how things get finished. Long-term orientation is in short supply; try not to worry about what people think in the short term, which will get easier over time.
  3. It is easier for a team to do a hard thing that really matters than to do an easy thing that doesn’t really matter; audacious ideas motivate people.
  4. Incentives are superpowers; set them carefully.
  5. Concentrate your resources on a small number of high-conviction bets; this is easy to say but evidently hard to do. You can delete more stuff than you think.
  6. Communicate clearly and concisely.
  7. Fight bullshit and bureaucracy every time you see it and get other people to fight it too. Do not let the org chart get in the way of people working productively together.
  8. Outcomes are what count; don’t let good process excuse bad results.
  9. Spend more time recruiting. Take risks on high-potential people with a fast rate of improvement. Look for evidence of getting stuff done in addition to intelligence.
  10. Superstars are even more valuable than they seem, but you have to evaluate people on their net impact on the performance of the organization.
  11. Fast iteration can make up for a lot; it’s usually ok to be wrong if you iterate quickly. Plans should be measured in decades, execution should be measured in weeks.
  12. Don’t fight the business equivalent of the laws of physics.
  13. Inspiration is perishable and life goes by fast. Inaction is a particularly insidious type of risk.
  14. Scale often has surprising emergent properties.
  15. Compounding exponentials are magic. In particular, you really want to build a business that gets a compounding advantage with scale.
  16. Get back up and keep going.
  17. Working with great people is one of the best parts of life.

Helion Needs You

Helion has been progressing even faster than I expected and is on pace in 2024 to 1) demonstrate Q > 1 fusion and 2) resolve all questions needed to design a mass-producible fusion generator.

The goals of the company are quite ambitious—clean, continuous energy for 1 cent per kilowatt-hour, and the ability to manufacture enough power plants to satisfy the current electrical demand of earth in a ten year period.

If both things happen, it will transform the world. Abundant, clean, and radically inexpensive energy will elevate the quality of life for all of us—think about how much the cost of energy factors into what we do and use. Also, electricity at this price will allow us to do things like efficiently capture carbon (so although we’ll still rely on gasoline for awhile, it’ll be ok).

Although Helion’s scientific progress of the past 8 years is phenomenal and necessary, it is not sufficient to rapidly get to this new energy economy. Helion now needs to figure out how to engineer machines that don’t break, how to build a factory and supply chain capable of manufacturing a machine every day, how to work with power grids and governments around the world, and more.

The biggest input to the degree and speed of success at the company is now the talent of the people who join the team. Here are a few of the most critical jobs, but please don’t let the lack of a perfect fit deter you from applying.

Electrical Engineer, Low Voltage: https://boards.greenhouse.io/helionenergy/jobs/4044506005
Electrical Engineer, Pulsed Power: https://boards.greenhouse.io/helionenergy/jobs/4044510005
Mechanical Engineer, Generator Systems: https://boards.greenhouse.io/helionenergy/jobs/4044522005
Manager of Mechanical Engineering: https://boards.greenhouse.io/helionenergy/jobs/4044521005

DALL•E 2

Today we did a research launch of DALL•E 2, a new AI tool that can create and edit images from natural language instructions. 

Most importantly, we hope people love the tool and find it useful. For me, it’s the most delightful thing to play with we’ve created so far. I find it to be creativity-enhancing, helpful for many different situations, and fun in a way I haven’t felt from technology in a while.

But I also think it’s noteworthy for a few reasons:

1) This is another example of what I think is going to be a new computer interface trend: you say what you want in natural language or with contextual clues, and the computer does it. We offer this for code and now image generation; both of these will get a lot better. But the same trend will happen in new ways until eventually it works for complex tasks—we can imagine an “AI office worker” that takes requests in natural language like a human does.

2) It sure does seem to “understand” concepts at many levels and how they relate to each other in sophisticated ways.

3) Copilot is a tool that helps coders be more productive, but still is very far from being able to create a full program. DALL•E 2 is a tool that will help artists and illustrators be more creative, but it can also create a “complete work”. This may be an early example of the impact AI on labor markets. Although I firmly believe AI will create lots of new jobs, and make many existing jobs much better by doing the boring bits well, I think it’s important to be honest that it’s increasingly going to make some jobs not very relevant (like technology frequently does).

4) It’s a reminder that predictions about AI are very difficult to make. A decade ago, the conventional wisdom was that AI would first impact physical labor, and then cognitive labor, and then maybe someday it could do creative work. It now looks like it’s going to go in the opposite order.

5) It’s an example of a world in which good ideas are the limit for what we can do, not specific skills.

6) Although the upsides are great, the model is powerful enough that it's easy to imagine the downsides.

Hopefully this summer, we’ll do a product launch and people will be able to use it for all sorts of things. We wanted to start with a research launch to figure out how to minimize the downsides in collaboration with a larger group of researchers and artists, and to give people some time to adapt to the change—in general, we are believers in incremental deployment strategies. (Obviously the world already has Photoshop and we already know that images can be manipulated, for good and bad.)

 (A robot hand drawing, by DALL•E)


Helion

I’m delighted to be investing more in Helion. Helion is by far the most promising approach to fusion I’ve seen.

David and Chris are two of the most impressive founders and builders (in the sense of building fusion machines, in addition to building companies!) I have ever met, and they have done something remarkable. When I first invested in them back in 2014, I was struck by the thoughtfulness of their plans about the scientific approach, the system design, cost optimizations, and the fuel cycle.

And now, with a tiny fraction of the money spent on other fusion efforts but the culture of a startup, they and their team have built a generator that produces electricity. Helion has a clear path to net electricity by 2024, and has a long-term goal of delivering electricity for 1 cent per kilowatt-hour. (!)

If this all works as we hope, we may have a path out of the climate crisis. Even though there are a lot of emissions that don’t come from electrical generation, we’d be able to use abundant energy to capture carbon and other greenhouses gases.

And if we have much cheaper energy than ever before, we can do things that are difficult to imagine today. The cost of energy is one of the fundamental inputs in the costs of so much else; dramatically cheaper energy will lead to dramatically better quality of life for many people.

The Strength of Being Misunderstood

A founder recently asked me how to stop caring what other people think. I didn’t have an answer, and after reflecting on it more, I think it's the wrong question.

Almost everyone cares what someone thinks (though caring what everyone thinks is definitely a mistake), and it's probably important. Caring too much makes you a sheep. But you need to be at least a little in tune with others to do something useful for them.

It seems like there are two degrees of freedom: you can choose the people whose opinions you care about (and on what subjects), and you can choose the timescale you care about them on. Most people figure out the former [1] but the latter doesn’t seem to get much attention.

The most impressive people I know care a lot about what people think, even people whose opinions they really shouldn’t value (a surprising numbers of them do something like keeping a folder of screenshots of tweets from haters). But what makes them unusual is that they generally care about other people’s opinions on a very long time horizon—as long as the history books get it right, they take some pride in letting the newspapers get it wrong. 

You should trade being short-term low-status for being long-term high-status, which most people seem unwilling to do. A common way this happens is by eventually being right about an important but deeply non-consensus bet. But there are lots of other ways–the key observation is that as long as you are right, being misunderstood by most people is a strength not a weakness. You and a small group of rebels get the space to solve an important problem that might otherwise not get solved.


 

[1] In the memorable words of Coco Chanel, “I don’t care what you think about me. I don’t think about you at all.”

PG and Jessica

A lot of people want to replicate YC in some other industry or some other place or with some other strategy. In general, people seem to assume that: 1) although there was some degree of mystery or luck about how YC got going, it can’t be that hard, and 2) if you can get it off the ground, the network effects are self-sustaining.

More YC-like things are good for the world; I generally try to be helpful. But almost none of them work. People are right about the self-sustaining part, but they can’t figure out how to get something going.

The entire secret to YC getting going was PG and Jessica—there was no other magic trick. A few times a year, I end up in a conversation at a party where someone tells a story about how much PG changed their life—people speak with more gratitude than they do towards pretty much anyone else. Then everyone else agrees, YC founders and otherwise (non-YC founders might talk about an impactful essay or getting hired at a YC company). Jessica still sadly doesn’t get nearly the same degree of public credit, but the people who were around the early days of YC know the real story.

What did they do? They took bets on unknown people and believed in them more than anyone had before. They set strong norms and fought back hard against bad behavior towards YC founders. They trusted their own convictions, were willing to do things their way, and were willing to be disliked by the existing power structures. They focused on the most important things, they worked hard, and they spent a huge amount of time 1:1 with people. They understood the value of community and long-term orientation. When YC was very small, it felt like a family.

Perhaps most importantly, they built an ecosystem (thanks to Joe Gebbia for pointing this out). This is easy to talk about but hard to do, because it requires not being greedy. YC has left a lot of money on the table; other people have made more money from the ecosystem than YC has itself. This has cemented YC’s place—the benefits to the partners, alumni, current batch founders, Hacker News readers, Demo Day investors, and everyone else around YC is a huge part of what makes it work.

I am not sure if any of this is particularly useful advice—none of it sounds that hard, and yet in the 15 years since, it hasn’t been close to replicated.

But it seems worth trying. I am pretty sure no one has had a bigger total impact on the careers of people in the startup industry over that time period than the two of them.